• 中文核心期刊要目总览
  • 中国科技核心期刊
  • 中国科学引文数据库(CSCD)
  • 中国科技论文与引文数据库(CSTPCD)
  • 中国学术期刊文摘数据库(CSAD)
  • 中国学术期刊(网络版)(CNKI)
  • 中文科技期刊数据库
  • 万方数据知识服务平台
  • 中国超星期刊域出版平台
  • 国家科技学术期刊开放平台
  • 荷兰文摘与引文数据库(SCOPUS)
  • 日本科学技术振兴机构数据库(JST)

基于DDQN的多智能体冲突消解方法

A multi-agent conflict resolution method based on DDQN

  • 摘要: 针对智能体在局部观测下无法有效决策的问题, 提出了一种结合深度强化学习的冲突消解方法。该方法基于DDQN算法, 利用强化学习的学习模式的特性, 计算智能体的累计回报, 通过回报值的大小确定智能体的优先级, 从而达到冲突消解的目的。通过模拟现实生活中的堵车场景对该方法进行评估, 实验结果表明, 该方法能有效解决智能体的冲突。

     

    Abstract: To solve the problem that agents cannot make effective decisions under local observation, a conflict resolution method combined with deep reinforcement learning is proposed. Based on DDQN algorithm, this method uses the characteristics of reinforcement learning mode to calculate the cumulative return of agent and determine the priority of agent through the return value, so as to achieve the purpose of conflict resolution. The method is evaluated by simulating the traffic jam in real life, and the experimental results show that the method can effectively solve the agent conflict.

     

/

返回文章
返回