• 中文核心期刊要目总览
  • 中国科技核心期刊
  • 中国科学引文数据库(CSCD)
  • 中国科技论文与引文数据库(CSTPCD)
  • 中国学术期刊文摘数据库(CSAD)
  • 中国学术期刊(网络版)(CNKI)
  • 中文科技期刊数据库
  • 万方数据知识服务平台
  • 中国超星期刊域出版平台
  • 国家科技学术期刊开放平台
  • 荷兰文摘与引文数据库(SCOPUS)
  • 日本科学技术振兴机构数据库(JST)

基于图神经网络的子图匹配符号算法

Subgraph matching symbol algorithm based on graph neural network

  • 摘要: 子图匹配是图数据分析中的基础问题, 具有重要的研究意义。针对子图匹配求解算法存在大量冗余搜索的问题, 提出了一种基于图神经网络的子图匹配符号算法。该算法利用图神经网络技术聚合节点的邻域信息, 得到包含图局部属性和结构的特征向量, 以该向量作为过滤条件得到查询图的节点候选集C。此外, 优化匹配顺序并利用符号ADD操作在数据图中构建C的各个候选区域, 减少了子图枚举验证过程中的冗余搜索。实验结果表明, 与VF3算法相比, 该算法有效地提高了子图匹配的求解效率。

     

    Abstract: Subgraph matching is a fundamental problem in graph data analysis and has important research significance. Aiming at the problem of a large number of redundant searches in the subgraph matching algorithm, a subgraph matching symbol algorithm based on graph neural network(SSMGNN) was proposed. The algorithm used the graph neural network technology to aggregate the neighborhood information of nodes, and obtained the feature vector containing the local attributes and structure of the graph, and used the vector as the filter condition to obtain the node candidate set C of the query graph. In addition, optimizing the matching order and using symbolic ADD operations to construct each candidate region of C in the data graph reduced redundant searches during subgraph enumeration verification. The experimental results show that, compared with the VF3 algorithm, the algorithm effectively improve the solving efficiency of subgraph matching.

     

/

返回文章
返回