• 中文核心期刊要目总览
  • 中国科技核心期刊
  • 中国科学引文数据库(CSCD)
  • 中国科技论文与引文数据库(CSTPCD)
  • 中国学术期刊文摘数据库(CSAD)
  • 中国学术期刊(网络版)(CNKI)
  • 中文科技期刊数据库
  • 万方数据知识服务平台
  • 中国超星期刊域出版平台
  • 国家科技学术期刊开放平台
  • 荷兰文摘与引文数据库(SCOPUS)
  • 日本科学技术振兴机构数据库(JST)

H-ResGAN在智能反射面辅助通信系统中的信道估计

Hybrid loss based residual generative adversarial network for channel estimation in intelligent reflecting surface assisted communication systems

  • 摘要: 智能反射面(intelligent reflecting surface, IRS)辅助通信系统的信道维度较高,现有的信道估计方法需使用大量导频才能得到准确的信道矩阵. 针对这一问题,提出了一种基于混合损失的残差生成对抗网络(hybrid loss based residual generative adversarial network, H-ResGAN)模型. H-ResGAN使用多个残差块来加深网络,可以充分提取信道特征,减缓梯度消失问题. 同时,采用条件最小二乘损失和L1损失相结合的混合损失作为目标函数来提高训练的稳定性. 仿真实验证明,H-ResGAN对环境噪声更具鲁棒性,估计误差显著低于传统方法;且与传统的估计算法相比,H-ResGAN仅需发送少量导频就能获得准确的估计结果.

     

    Abstract: Intelligent reflecting surface (IRS) aided communication systems have high channel dimensionality and the existing channel estimation methods require a lot of pilots to obtain an accurate channel matrix. To address this problem, a hybrid loss based residual generative adversarial network (H-ResGAN) model is proposed. H-ResGAN uses multiple residual blocks to deepen the network, which can fully extract channel features and mitigate the gradient disappearance problem. At the same time, a hybrid loss combining least squares loss and L1 loss is adopted as the objective function to improve the stability of the training. Simulation experiments demonstrate that H-ResGAN is more robust to environmental noise and has significantly lower estimation errors than traditional methods. In addition, H-ResGAN can obtain accurate estimation results by sending only few pilots compared to traditional estimation algorithms.

     

/

返回文章
返回