• 中文核心期刊要目总览
  • 中国科技核心期刊
  • 中国科学引文数据库(CSCD)
  • 中国科技论文与引文数据库(CSTPCD)
  • 中国学术期刊文摘数据库(CSAD)
  • 中国学术期刊(网络版)(CNKI)
  • 中文科技期刊数据库
  • 万方数据知识服务平台
  • 中国超星期刊域出版平台
  • 国家科技学术期刊开放平台
  • 荷兰文摘与引文数据库(SCOPUS)
  • 日本科学技术振兴机构数据库(JST)

基于相互无偏基和拟合优度检验的频谱感知方法

Spectrum sensing based on MUB and goodness of fit test

  • 摘要: 频谱感知是认知无线电中最重要的技术之一. 基于相互无偏基(mutually unbiased bases, MUB)矩阵,提出了改进的KS(Kolmogorov-Smirnov)拟合优度检验方法. 所提方法充分利用MUB的弱相关性,对接收的样本信号做数据处理,以扩大样本的规模,从而提高检验性能. 蒙特卡洛模拟仿真结果表明,在接收样本数量有限并且噪声服从高斯分布的情况下,本文提出的方法对于接收信号的检测概率要高于常规的KS检验方法.

     

    Abstract: Spectrum sensing is one of the most important technologies in cognitive radio. Based on the mutational unbiased bases (MUB) matrices and goodness of fit test, a novel spectrum sensing method based on the traditional Kolmogorov-Smirnov (KS) test is proposed in this paper. Specifically, by using MUB matrices to process the received samples, new samples with low correlation are generated, and thus, the number of samples is enlarged, and its sensing performance is improved. Simulation results show that when the number of received samples is limited and the noise is subject to Gaussian distribution, detection probability of the proposed method is higher than the traditional KS test method.

     

/

返回文章
返回