• 中文核心期刊要目总览
  • 中国科技核心期刊
  • 中国科学引文数据库(CSCD)
  • 中国科技论文与引文数据库(CSTPCD)
  • 中国学术期刊文摘数据库(CSAD)
  • 中国学术期刊(网络版)(CNKI)
  • 中文科技期刊数据库
  • 万方数据知识服务平台
  • 中国超星期刊域出版平台
  • 国家科技学术期刊开放平台
  • 荷兰文摘与引文数据库(SCOPUS)
  • 日本科学技术振兴机构数据库(JST)

基于柱坐标抛物方程的海上雷达覆盖范围研究

The study for maritime radar coverage based on cylindrical coordinate parabolic equationmethod

  • 摘要: 为预测雷达波在海面的全向传播特性,提出了基于柱坐标抛物方程(parabolic equation,PE)的电波传播模型,用于海上雷达覆盖范围的研究. 从亥姆霍兹方程出发,推导出柱坐标系下的前向PE形式. 再利用PE通解中三角函数的正交性,求解各电波传播模式的激励系数,结合分步傅里叶变换实现柱坐标PE的步进迭代算法,以预测电波在空间的传播特性. 数值算例表明:本文提出的柱坐标PE可突破传统三维直角坐标PE约30°的近轴传播的局限性,实现方向面上的全向计算;相较于准三维PE具有更高的计算精度. 基于上述方法,研究了大气波导、粗糙海面对雷达探测性能的影响,仿真结果对构建海上数字化战场具有重要的指导意义.

     

    Abstract: In order to predict the omnidirectional propagation characteristics of radar waves over the sea surface, a radio wave propagation model based on cylindrical coordinate parabolic equation is proposed and used to study the coverage range of marine radar. In this paper, the forward parabolic equation in cylindrical coordinate system is derived from Helmholtz equation. By using the orthogonality of trigonometric functions in the general solution of the parabolic equation, the excitation coefficients of each wave propagation modes are solved, and the stepwise iterative algorithm of the cylindrical coordinate parabolic equation is realized by combining the split step Fourier method, to predict the propagation characteristics of the radio waves in space. Numerical examples show that the method proposed in this paper can overcome the azimuth limitation of the traditional three-dimensional cartesian coordinate parabolic equation method, which propagates about 30° along the axis, and realizes the omnidirectional calculation. Compared with quasi-three dimensional parabolic equation, it has higher calculation accuracy. Based on the proposed method, the influences of atmospheric waveguide and rough sea surface on radar detection performance are studied, the simulation results have important significance for constructing digital battlefield at sea.

     

/

返回文章
返回